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Novel averaging window filter for SIFT in infrared
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The extraction of stable local features directly affects the performance of infrared face recognition al-
gorithms. Recent studies on the application of scale invariant feature transform (SIFT) to infrared face
recognition show that star-styled window filter (SWF) can filter out errors incorrectly introduced by SIFT.
The current letter proposes an improved filter pattern called Y-styled window filter (YWF) to further elim-
inate the wrong matches. Compared with SWF, YWF patterns are sparser and do not maintain rotation
invariance; thus, they are more suitable to infrared face recognition. Our experimental results demonstrate
that a YWF-based averaging window outperforms an SWF-based one in reducing wrong matches, therefore
improving the reliability of infrared face recognition systems.
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Infrared human face recognition has become an area
of growing interest in literature[1]. Most representative
methods include elemental shape matching, eigenface,
metrics matching, template matching, symmetry wave-
forms, and face codes[2−4] are introduced from the visi-
ble domain. Among these methods, symmetry waveforms
and face codes utilize the anatomical structure by analyz-
ing the infrared vascular pattern, while the others extract
and match thermal contours[1]. Compared with recogni-
tion in visible-spectrum imagery, face recognition in the
thermal infrared domain has received relatively little at-
tention in literature.

For infrared face recognition, there are several success-
ful candidate visual approaches based on invariant fea-
ture extraction[5]. Mikolajczyk et al. made the first
effort in this area and achieved rotation invariance[6].
Lowe extended this approach and achieved scale
invariance[7,8]. Many researchers have reported achieve-
ments in affine transformation invariance and rotation,
including scale invariant feature transform (SIFT), inde-
pendent component analysis, improved Harris corner de-
tector, and fractal and genetic algorithms[9−14]. Among
them, the methods based on scale–space feature extrac-
tion, i.e., SIFT[10] and improved Harris corner[14], are
most applicable to infrared human face recognition. Be-
tween them, features extracted by SIFT are more dis-
persed in spatial distribution, more stable for occlusion,
and are relatively large in quantity[15]. Therefore, the
former is more suitable for infrared features, and SIFT is
taken as our candidate method for investigation.

By introducing SIFT into the infrared domain, sev-
eral problems in infrared human face recognition, such
as wearing glasses and facial rotation, can be solved di-
rectly. However, SIFT has an intrinsic defect, that is,
it generates mismatches for points with similar textures
around them. Experiments by Tan et al. showed that

most of these mismatches differ in mean brightness[16].
By applying a star-styled averaging window, mismatches
can be removed effectively. Tan’s study examined only
one pattern out of many possible averaging window filters
applicable in this scenario. In this letter, two other can-
didate filter patterns, namely, cross-styled window filter
(CWF) and Y-styled window filter (YWF), are proposed,
which are proved to be more effective in yielding better
filtering results than star-styled window filter (SWF).

The elegant design of the four SIFT stages enables it
to extract distinctive invariant features from an image
better than other algorithms. However, the construction
of the SIFT features is completely performed in the scale
space and the features of the original image space are not
used. Patches with similar local textures will therefore
result in similar keypoint descriptors, leading to incorrect
features when used for object recognition. The proof is
given below.

Let A and B be similar patches in I(x, y). Let a and b
be points in the same relative physical location of A and
B, respectively, i.e., a ∈ A, b ∈ B and a ≈ kb, where k
is the gray level ratio. In addition, let a0 and b0 be local
extrema in A and B, respectively. Our derivation follows
the stages similar to those in SIFT.

In the first stage, the two patches are subjected to the
difference of Gaussian (DoG) transformation. Since the
DoG operator is linear, we have

DoG(a) ≈ DoG(k · b) = k · DoG(b). (1)

Meanwhile, the relative physical locations of a0 and b0

are the same because a ≈ kb.
In the second stage, the previous two criteria are

checked on a0 and b0. Since a0 ≈ kb0, it is impossi-
ble that one extrema is along an edge and the other is
not. Assume that a0 and b0 are stable. Thus, both of
them will pass the test of the second stage.
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In the third stage, the magnitude assignment formula
is linear as well. Since DoG(a) ≈ k·DoG(b), we have

m[DoG(a)] ≈ m[k · DoG(b)] = k · m[DoG(b)]. (2)

For the orientation assignment formula, the division in
it eliminates the effect of the coefficient k. Thus, we
have

θ[DoG(a)] ≈ θ[k · DoG(b)] = θ[DoG(b)]. (3)

The normalization procedure in the fourth stage guar-
antees that the normalized version of the magnitude m′

and the orientation θ′ of a and b are approximately equal,
i.e.,

m′[DoG(a)] ≈ m′[DoG(b)], (4)

and
θ′[DoG(a)] ≈ θ′[DoG(b)]. (5)

After that, the following weighting, projection, and
summing procedure to obtain the SIFT descriptor
SIFT[DoG(xi, yi, σi )] are all linear. We therefore have

SIFT[DoG(a0)] ≈ SIFT[DoG(b0)]. (6)

The consequence of Eq. (6) is that a matching procedure
may consider the match between two different extremas
generated by SIFT as a better match than the true
match between the keypoints with the same physical lo-
cation. Figure 1 shows the SIFT wrong matches between
two scenes, both of which are adapted from Yan Ke’s
work[17]. The local texture similarity can be observed
clearly.

In our experiments, two characteristics of most mis-
matches were found. Firstly, the mismatches differ in the
brightness of their local texture. Secondly, rotation along
the axis perpendicular to the page is necessary to provide
spatial correspondence for patches around mismatched
keypoints. In other words, patches around mismatched
keypoints cannot set up spatial correspondence without
rotation. Based on the two observations, a straightfor-
ward solution to filtering mismatched keypoints is to use

Fig. 1. Illustration of mismatched points resulting from local
texture similarity. (a) A photo of a cluttered coffee table;
(b) a mural painting. The solid lines represent the correct
matches while the dotted lines represent the incorrect ones.

Fig. 2. General pattern of averaging window. The keypoint
is the center pixel and the deep colored locations are pixels
selected for the window. (a) The SWF proposed in Ref. [16];
(b) the CWF; (c) the YWF.

the gray level information in an averaging window with
a pattern that is sparser and does not preserve rotation
invariance.

Two averaging window patterns (Fig. 2) are proposed
to test this hypothesis. CWF is designed as a cross-styled
pattern to keep the rotation invariance features of SIFT.
Compared with SWF, CWF is sparser and should there-
fore outperform SWF. In the present letter, to further
avoid the rotation invariance property, YWF is proposed
as the candidate averaging window pattern and is ex-
pected to have the best performance.

Our approach keeps the original SIFT stages and
adds additional stages to evaluate the tradeoffs between
eliminating mismatched points and preserving correctly
matched points. To ensure the accuracy of our results
easy comparison to the results of the previous work, we
use the original SIFT source code provided by Vedaldi[18]

and the SWF algorithm presented in Ref. [16].
Our algorithm adds two additional stages to SIFT: av-

eraging information extraction and averaging informa-
tion thresholding. The former stage generates a proper
value to represent the local texture around the keypoint.
The latter stage eliminates mismatches by choosing an
optimized threshold.

Averaging the brightness information of the local patch
is a direct and effective method for eliminating wrong.
The topology of point locations selected from the local
texture is called filter window. The choice of shape and
size affects the filtering performance. Figure 2 illustrates
the general style of averaging window. Figure 2(a) is the
pattern for SWF. Figures 1(b) and (c) give the general
patterns for the proposed cross-style and Y-style averag-
ing window, respectively. The point at the center of the
patch is the keypoint; the pixels with deep color are lo-
cations selected for the averaging window. The average
gray-scale value at the selected pixels is named averaging
information (AI). In general, the averaging window size
could be (2N+1)×(2N+1), N=2, 3, 4. . . .

Let I(x, y) be the center of the averaging patch, i.e.,
the keypoint. The AI[I(x, y)] is evaluated as

AI[I(x, y)] = mean





∑

i,j

I(i, j)



 , (7)

where I(i, j) refers to the brightness of the pixel located
in (i, j), and i, j are selected such that the pixel is lo-
cated in the averaging window.

We take the same method to threshold AI as used in
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SIFT and SWF, i.e., minimum Euclidian distance.

AI[I1(xi, yi)] − AI[I2(xj , yj)] =

{

6 IT, Accept
> IT, Reject

, (8)

where AI[I1(xi, yi)] and AI[I2(xj , yj)] are AI for the com-
pared matched pair I1(xi, yi) and I2(xj , yj), respectively.

The Terravic Research’s Infrared Human Faces
Database contains infrared picture frames of the faces
of 20 people taken in a variety of cases: wearing glasses,
wearing a hat, or with face rotation. We choose 3 to 6
frames of every person’s infrared face picture sequences,
resulting in 102 frames in total. The frames are cho-
sen based on the rule that each frame represents a case
stated in the previous paragraph. More specifically, the
frames chosen for the face rotation case are taken at 15◦.
from the front side direction. This angle choice is typi-
cal because the cameras are located 30◦. away in three-
dimensional photography.

Recall-Precision is chosen as our evaluation metric. Re-
call and 1-Precision are defined as[1]

Recall = TP/(TP + FN), (9)

1 − Precision = FP/(TP + FP), (10)

where TP (true-positive) is a match generated by the
algorithm where the two points correspond to the same
physical location; FP (false-positive) is a match gener-
ated by the algorithm where the two points correspond
to different physical locations; and FN (false-negative)
is a match corresponding to the same physical location
but not identified by the algorithm. In our experiment,
the values of FP and (TP+FP) differ little. Therefore,
the ratio Recall/(1-Precision) is used to represent the
performance of the algorithm instead.

The cases in the experiment, especially the cases of
wearing hat and wearing glasses, cannot be easily mod-
eled. Thus, generating TP and FN automatically would
be difficult. Fortunately, despite the large number of
keypoints generated by SIFT in high resolution images,
the keypoints are far more less in the case of infrared
human picture. The matches are mostly around 100. We
therefore identify the parameter TP+FN manually to
ensure correctness.

We compare the Recall-Precision performance among
SWF, CWF, and YWF. The SIFT result is given as the
baseline. Three cases of infrared human faces matching
are tested: (1) rotation of 15◦. including both right and
left rotation; (2) wearing glasses, where the part of the
face behind the glasses is completely shielded; and (3)
wearing a hat. There is no separate case for brightness
variation because the pictures tested for the previous
three cases were already subjected to brightness varia-
tion.

Figure 3 presents typical results for the wearing glasses
case in our experiments. The bold lines represent the
incorrect matches resulting form similar local textures.
Figures 3(b)–(d) show the matching results of SWF,
CWF, and YWF applied to the same pair of images
used in Fig. 3(a), respectively. CWF and YWF clearly
dominate SWF in eliminating incorrect matches. There
is only one incorrect match in both Figs. 3(c) and (d),
whereas Fig. 3(b) has two errors. When comparing CWF
and YWF, the number of total matches in Fig. 3(c) is

slightly smaller than that in Fig. 3(d). Furthermore,
YWF generates more correct matches.

The size of the averaging window is determined by
the picture’s resolution and the noise level, which are
characterized by the database tested. The same infrared
database in Ref. [16] is used; hence, the same group
of N , i.e., N=2, 3, 4, is tested. The result is shown in
Table 1. The TP+FP AVG column gives the average
of total matches. The FP AVG column gives the aver-
age of false matches. PR ratio represents the ratio of
Recall/(1-Precision). The Recall/(1-Precision) ratio of
N=3 is about 8% higher than that of N=2, and 11%
higher than that of N=4. Therefore N=3 is the best
choice.

Table 2 compares different thresholds of YWF. As
shown in the table, along with threshold increase, both
total matches and false matches increase. From IT =0.15
to IT =0.17, PR ratio increases, while from IT =0.17 to
IT =0.19, it decreases. Therefore, IT =0.17 makes the
best performance. A small value of IT would, therefore,
degrade the performance because the gain from decreased
false matches is less than the loss from decreased total
matches. Meanwhile, a large IT value would also de-
grade the performance because the gain from increased
total matches is less than the loss from increased false
matches. IT =0.17 is the value which balances both the
gain and the loss. Therefore, 0.17 is chosen in our com-
parison experiment.

Fig. 3. Comparison of filtering effectiveness of SIFT versus
three different kinds of averaging window filters. An infrared
face with and without glasses is chosen as the candidate pic-
ture. (a) Match result for SIFT; (b)–(d) match results for
SWF, CWF, and YWF averaging window, respectively. The
bold lines denote the wrong matches while the thin ones de-
note the correct matches.

Table 1. Recall/(1-Precision) Performance of YWF
with Different Window Sizes

N TP+FP AVG FP AVG PR ratio

2 32.35135 1.324324 4.240739

3 32.36486 1.216216 4.63773

4 32.37838 1.216216 4.11642

Table 2. Performance of YWF with Different
Threshholds

Threshold TP+FP AVG FP AVG PR Ratio

0.15 30.82432 1.148649 4.455639

0.16 31.61282 1.175676 4.585721

0.17 32.36486 1.216216 4.63773

0.18 32.83784 1.333333 4.341221

0.19 33.45946 1.527027 3.914781
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Table 3. Recall/(1-Precision) Performance of SIFT,
SWF, and the Proposed Methods

Algorithm TP+FP AVG FP AVG PR Ratio

SIFT 53.79487 6.589744 2.156079

SWF 35.51282 1.794872 3.732640

CWF 32.22973 1.256757 4.444179

YWF 32.36486 1.216216 4.637730

Fig. 4. (a) SIFT and (b) YWF averaging window’s perfor-
mance in scale variation. The tested picture frames are down
sampled to half their original size. The bold lines denote
the wrong matches while the thin ones denote the correct
matches.

Table 3 compares the SIFT and SWF results, and
the proposed CWF and YWF averaging window filters.
The number of false matches decreases significantly and
the number of total matches also decreases using YWF
compared to those using SWF. Based on these results,
YWF discards false matches at the cost of filtering some
correct matches, i.e., there is a tradeoff between false
matches and total matches. As for the ratio of Recall/(1-
Precision), YWF clearly dominates SWF in the experi-
ment. The Recall/(1-Precision) ratio of YWF is about
16% better than that of SIFT.

YWF eliminates some of the correct matches while re-
ducing the incorrect matches. Hence, a natural question
to ask is what kind of correct matches it can pick out.
Our experiments show that the correct matches mistak-
enly filtered by YWF are subjected to strong noise. In
this situation, the differences of average brightness ex-
ceed the threshold and are judged as mismatches. Strong
noise cannot be handled by simply applying an averaging
window method. This is beyond the reach of the algo-
rithms considered in this letter. Major improvements of
our algorithm or alternative algorithms may be needed to
minimize or eliminate the adverse effect of strong noise.

YWF inherits the four basic stages of SIFT; therefore,
it is not robust to scale variation either. The facial in-
frared pictures used in our experiment do not provide
scale variation samples. Therefore, a simple experiment
is performed by down sampling the picture frames to
half their original size. They are then tested with both
SIFT and YWF-SIFT against the original ones. Both
algorithms incorrectly eliminated most of the matches.

Figure 4 illustrates the typical result of SIFT and
YWF-SIFT in scale variation. Compared to Fig. 3,
performance of both algorithms obviously decreases.
More false matches are generated by SIFT and few total
matches by YWF-SIFT. This phenomenon is attributed
to the intrinsic defect of SIFT, whose performance de-
grades for infrared images with low definition. Mean-

while, scale variation feature is not considered in the
design of the averaging window.

In conclusion, we propose a novel averaging window
filter YWF for applying SIFT to infrared human face
recognition. Compared with SWF recently proposed by
Tan et al.[16], YWF patterns are sparser and are designed
to avoid rotation invariance. Experimental results show
that YWF is more suitable for eliminating wrong matches
generated by SIFT. YWF could also be a viable method
for filtering false matches of color images because it only
utilizes the local texture information around a keypoint.
We are currently exploring this idea in other infrared
application scenarios and color images.

This work was supported by the Natural Science Foun-
dation of Hubei Province under Grant No. 2009CDB320.
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